国产精品国产精品一区精品国产自在现偷99精品国产在热2019国产拍偷精品网国产精品视频全国免费观看,国产精品v欧美精品v日韩精品青青精品视频国产久久国产精品久久精品国产亚洲精品国产精品国产欧美精品一区二区三区,国产精品第一页国产亚洲精品国产福利国产精品自拍国产精品视频在线观看亚洲国产精品一区二区久久国产精品国产三级国产专不,国产精品视频大陆精大陆国产国语精品2019精品国产品对白在线285年香蕉精品国产高清自在自线隔壁老王国产在线精品在线观看精品国产福利片,国产三级精品三级在专区精品国产自在现偷国产精品一区二区三区国产日韩精品欧美一区喷水亚洲精品国产精品国自产国产在线精品一区二区不卡

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > New methods from material sciences in physics find their way

New methods from material sciences in physics find their way

 Date:

June 18, 2019
Source:
University of Copenhagen
Summary:

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers have shown how a combination of neutron scattering and thermal analysis can be used to map the properties of water in breast cancer cells.

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers, Murillo Longo Martins and Heloisa N. Bordallo at the Niels Bohr Institute, University of Copenhagen, have shown how advanced methods in materials analysis -- a combination of neutron scattering and thermal analysis -- can be used to map the properties of water in breast cancer cells. This pilot work shows how the mobility of water molecules confined in cancer cells changes when subjected to treatment with a chemotherapy drug. This proposed methodology holds potential for advance diseases diagnosis and might guide to the advancement of the approach used in cancer treatment, one of the biggest challenges in medical research. The result, now published in Scientific Reports, is exactly that.

Comparing cancer cells before and after treatment

When treating cancer with chemotherapy, the drug is usually inserted into the body via the bloodstream. Afterwards the medicament spreads to the entire system, making its way to the cancer cells. The effect of the drug depends on many, many factors. For example, the properties of intra cellular water are altered by the action of the drug. However the role of water in the development or remission of tumors is likely bigger than so far considered. This new perspective will be very instrumental in mapping the precise development, when comparing analysis before and after treatment.

Understanding water and its properties -- a common denominator for all cancer cells -- is vital

Water being the main component in the composition of the cell, understanding its properties, when undergoing treatment for cancer, is vital. Cancer cells respond differently to different kinds of treatment, so a new unorthodox analysis, using techniques from materials-sciences, of the cell's main component, its composition and behavior, could be a common denominator in developing new treatments for individual patients. Murillo Longo Martins, who has been working in this field during his PhD and postdoc at the Niels Bohr Institute, explains: "Our findings indicate that, in the future, drugs can be developed focusing on modifying the properties of cellular water to achieve specific outcomes. In a shorter term, understanding the dynamics of cellular water may provide complementary knowledge about, for example, why some types of cancers respond differently to certain treatments than others."

Unorthodoxy as a method

While physicians and biologists perceive cells as an ensemble of membranes, organelles, genes and other biological components, by combining sophisticated neutron scattering techniques and thermal analysis physicists are able to characterize water dynamics in the cell very precisely. Building a communication interface between these two distinct visions is now proven to be very interesting by the researchers at the Niels Bohr Institute. Their new results can open new areas of inquiry, because of the unorthodox approach. This result is expected to stimulate future collaborations between distinct scientific communities, and further incentivize the use of materials-science approaches when investigating biological matter.

Story Source:

Materials provided by University of CopenhagenNote: Content may be edited for style and length.


Journal Reference:

  1. Murillo L. Martins, Alexander B. Dinitzen, Eugene Mamontov, Svemir Rudi?, José E. M. Pereira, Rasmus Hartmann-Petersen, Kenneth W. Herwig, Heloisa N. Bordallo. Water dynamics in MCF-7 breast cancer cells: a neutron scattering descriptive studyScientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45056-8
油尖旺区| 东乌珠穆沁旗| 酒泉市| 伊川县| 平和县| 犍为县| 桦甸市| 手游| 洪江市| 沙坪坝区| 宁陕县| 酒泉市| 南乐县| 沂水县| 汝城县| 化德县| 固阳县| 娱乐| 深水埗区| 辽源市| 阿克苏市| 民权县| 白山市| 东明县| 岢岚县| 达孜县| 前郭尔| 沿河| 新民市| 宁国市| 虞城县| 公主岭市| 垦利县| 本溪市| 开化县| 茂名市| 长汀县| 勐海县| 友谊县| 阜宁县| 丰县|